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Question 1: Life insurance with adverse selection

By differentiating the Lagrange function that is stated in the question, we obtain the following eight

first-order condition:
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By solving (1) for μ and then plugging into (2), we have
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Plugging this back into (1) yields
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By plugging in the above expressions for μ and λ into (3) and then rewriting, we obtain
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Similarly, the right-hand sides of (5)-(8) are identical, which means that u1 = uB
2 = uA

2 = u3 ≡ u. By

plugging in the above expression for λ in (5), we obtain
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We also know that IR-low and IC-high bind. The binding IR-low constraint can be written as

u1 + θuB
2 + 2(1 − θ)uA

23 = U∗. (13)

Part (a)

The right-hand sides of (5)-(8) are identical. Moreover, the function h′ is strictly increasing. Therefore,

the arguments of h′ on the left-hand sides of (5)-(8) must all equal each other. That is, at the optimum

we must have

u1 = uB
2 = uA

2 = u3
def= u. (14)

which means that the high type is fully insured at the optimum.

Part (b)

First note that the right-hand sides of (3) and (4) are identical, which means that uA
2 = u3

def= uA
23.

Next, by solving (1) for μ and then plugging into (2), we have
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We know from any one of equations (5)-(8) that λ > 0. Therefore, (15) implies h′ (u1) > h′
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)
, which

in turn (since h′′ > 0) means that u1 > uB
2 . Finally, by dividing both sides of (3) by 1 − θ, we have
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the right-hand side of which is larger than μ − λ. Combining (16) and (1) therefore yields h′
(
uA

2

)
>

h′ (u1), which in turn (thanks to h′′ > 0) means that uA
2 > u1 . All in all, we have shown that, at the

optimum,
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2 . (17)

Part (c)

Standard arguments. See lecture slides and textbook.
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Question 2: Moral hazard with mean-variance preferences

(a) Solve for the β parameter in the second-best optimal contract, denoted by βSB (you do not need to

solve for αSB, and you will not get any credit if you nevertheless do that). You should make use of

the following (well-known) result:

EU = − exp

[

−r
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α + βe −
1
2
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1
2

νrβ2
)]

.

• P chooses the parameters in the contract, α and β. In addition, P can effectively choose A’s effort

e, because P designs the incentives that A faces when deciding what effort to make. We can thus

think of P as choosing α, β, and e in order to maximize his expected payoff, subject to A’s individual

rationality (IR) constraint and incentive compatibility (IC) constraint. P’s problem:

max
α,β,e






=EV︷ ︸︸ ︷
(1 − β) e − α





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e ∈ arg max
e′

EU
(
e′
)

. (IC)

The IC constraint says that e indeed maximizes A’s utility among all the e’s that A could choose.

The IR constraint says that A’s expected utility if accepting the contract is at least as large as his

utility from his outside option; this therefore ensures that A wants to participate.

• The IC constraint above is actually a whole set of infinitely many constraints. In order to reduce

these to one single IC constraint, we can make use of the first-order approach, which means that we

replace IC above with the first-order condition from A’s maximization problem (for some arbitrary

values of the contract parameters α and β). From the question we have that A’s expected utility

can be written as

EU = − exp

[

−r

(

α + βe −
1
2

e2 −
1
2

νrβ2
)]

.

Maximizing EU is equivalent to maximizing a monotone transformation of this expression, so we

can without loss of generality let A maximize

ẼU = α + βe −
1
2

e2 −
1
2

νrβ2. (18)

• We have
∂ẼU

∂e
= β − e = 0

Therefore A’s optimal effort level is

e = β. (19)

• We can write the IR constraint as

4



−
∞∫

−∞

exp [−r (t − c (e))] f (z) dz ≥ − exp
[
−rt̂

]
⇔

− exp

[

−r

(

α + βe −
1
2

e2 −
1
2

νrβ2
)]

≥ − exp
[
−rt̂

]
⇔

exp

[

−r

(

α + βe −
1
2

e2 −
1
2

νrβ2
)]

≤ exp
[
−rt̂

]
⇔

−r

(

α + βe −
1
2

e2 −
1
2

νrβ2
)

≤ −rt̂ ⇔

α + βe −
1
2

e2 −
1
2

νrβ2 ≥ t̂ ⇔

α ≥ t̂ − βe +
1
2

e2 +
1
2

νrβ2.

Plugging in (19) in this inequality, we obtain

α ≥ t̂ − β2 +
1
2

β2 +
1
2

νrβ2

= t̂ −
1
2

(1 − νr) β2.

Plugging in (19) into P’s objective function EV = (1 − β) e − α , we have

EV = (1 − β) β − α.

• Using the above results, P’s problem becomes

max
α,β

{(1 − β) β − α} subject to

α ≥ t̂ −
1
2

(1 − νr) β2. (IR)

• It is clear that IR must bind, as the objective is decreasing in α and the constraint is tightened as α is

lowered (thus P wants to lower α until the constraint says stop). We thus have α = t̂− 1
2 (1 − νr) β2.

Plugging this value of α into the objective yields the following unconstrained problem:

max
β

{

β −
1
2

(1 + νr) β2 − t̂

}

,

with the first-order condition

1 − (1 + νr) β = 0 ⇒ βSB =
1

1 + νr
.

(b) Does the agent get any rents at the second-best optimum? Do not only answer yes or no, but also

explain how you can tell.

• No, he does not get any rents at the second-best optimum. “Rents” are defined as any payoff

from accepting the contract that exceeds the outside option payoff. However, we saw under

a) that the IR constraint binds at the optimum, which means that A does not get any rents.
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(c) The first-best values of the effort level and the β parameter equal eFB = 1 and βFB = 0, respectively.

How do these values relate to the corresponding second-best values? In particular, is there under-

or overprovision of effort at the second-best optimum?

• We have from the above analysis that βSB = eSB = 1
1+νr . We see that there is underprovision

of effort (as eSB < eFB). We also see that the β parameter is too large relative to the first best

level (βSB > βFB).

(d) Consider the limit case where r → 0. Explain what happens to the relationship between the

second-best and the first-best effort levels. Also explain the intuition for this result.

• In the limit where r → 0, A is risk neutral. We see from above that in that limit, eSB = 1.

That is, the second-best effort level coincides with the first-best level: there is no inefficiency

in spite of the fact that there is asymmetric information. The reason why this can occur is

that when A is risk neutral he doesn’t mind bearing risk. Therefore P can incentivize A very

strongly, so that indeed βSB → 1 as r → 0: A’s compensation depends fully on the stochastic

variable, so he makes the same decision as P would have made if he had been in A’s job.

• The intuition is the same as we have discussed in other parts of the course, for example in the

2x2 moral hazard model with a risk neutral agent who is not protected by limited liability.

There we explained the intuition as follows:

– The economic meaning of the fact that A is risk neutral is that he cares only about whether

his payment t is large enough on average. Hence, P can, without violating the participation

constraint, incentivize A by giving him a negative payment (in practice a penalty) in case

of a low output. More generally, P can achieve the first-best outcome by making A the

residual claimant:

* Then A effectively buys the right to receive any returns: “the firm is sold to the agent”.

* Thereby, the effort level is chosen by the same individual who bears the consequences

of the choice.

* In this situation A makes the same effort choice as P would have made.
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